Exploring Ranking Theory as an Alternative Model for Human Uncertainty Representation
Whiverity of
WATERLOO
Department of Psychology and Centre for Theoretical Neuroscience, University of Waterloo, Canada

What is "Ranking Theory"?

- A normative belief revision model that represents degrees of belief and disbelief, as an alternative to probability theory ${ }^{1,2}$. To investigate ranking theory as (E1:E4) examined the relationship approaches, four experiments (EL :E4) examined the
between ranking functions and subjective probabilities.

Metrics of beliefs

A grading of disbelief (or surprise) expressed by negative ranking function, $\kappa:(\text { scale from } O \text { to } \infty)^{1,2}$
$\kappa(A)=0: A$ is not disbelieved (not surprising) $\kappa(A)>0: A$ is disbelieved (surprising) $\kappa(A)=\infty: A$ is considered impossible $\kappa(A)=0$ or $\kappa(\bar{A})=0$: [the law of negation] A grading of belief expressed by positive ranking function, β (scale from 0 to $\infty)^{1,2}$
$\beta(A)=\kappa(\bar{A}):$ Belief in A equals disbelief in not- A Integrating positive and negative ranks into a two-sided ranking function τ expresses belief and disbelief at once: (scale from - ∞ to $\infty)^{1,2}$
$\tau(A)=\beta(A)-\kappa(A)=\kappa(\bar{A})-\kappa(A)$

Probability-Rank translation

 $\kappa(A)=\log _{b} P(A)-\log _{b} \max _{S \in \Omega} P(S), \quad b \in(0,1)$ $P(A)+P(\bar{A})=$ $\tau(A)=\kappa(\bar{A})-\kappa(A)=\log _{b}(1-P(A))-\log _{b} P(A)$ $\tau(A)=\log _{b}\left(\frac{1-P(A)}{P(A)}\right):$ [probability to two-sided rank] $P(A)=\frac{1}{b^{\tau(A)}+1}:$ [two-sided rank to probability]

E4 Methods - learning task: modelling opponent behaviour through probability manipulation

Mou found Kalal

Room A
Room

Exploring the logarithmic relationship: degrees of disbelief and subjective probability in the hide-and-seek learning task

Disbelief thresholds represented by subjective probability vary depending on context

Log-odds relationship between probability and two-sided ranks

Degrees of disbelief represent objective probability distribution
with greater accuracy compared to subjective probability

(E4: $N=255$)

