

Exploring Ranking Theory as an Alternative Model for Human Uncertainty Representation UNIVERSITY OF WATERLOO Hanbin Go & Britt Anderson

Department of Psychology and Centre for Theoretical Neuroscience, University of Waterloo, Canada

What is "Ranking Theory"?

 A normative belief revision model that represents degrees of belief and disbelief, as an alternative to probability theory 1,2 .

• To investigate ranking theory as an alternative to probabilistic approaches, four experiments (E1:E4) examined the relationship between ranking functions and subjective probabilities.

Metrics of beliefs

(1)

(2)

(3)

(4)

(7)

(9)

(10)

A grading of **disbelief** (or surprise) expressed by *negative* ranking function, κ : (scale from 0 to ∞)^{1,2}

 $\kappa(A) = 0 : A$ is not disbelieved (not surprising)

 $\kappa(A) > 0$: A is disbelieved (surprising)

 $\kappa(A) = \infty : A$ is considered impossible

Participants' use of negative ranking functions to express disbelief was

consistent across different propositions

Disbelief thresholds represented by subjective probability vary depending on context

Relationship between subjective probability and negative ranks for three questionnaires (E1: N = 168)

 $\kappa(A) = 0$ or $\kappa(\overline{A}) = 0$: [the law of negation]

A grading of **belief** expressed by **positive** ranking function, β : (scale from 0 to ∞)^{1,2}

 $\beta(A) = \kappa(\overline{A})$: Belief in A equals disbelief in not-A

Integrating *positive* and *negative* ranks into a *two-sided* ranking function τ expresses **belief and disbelief** at once: (scale from - ∞ to ∞)^{1,2}

 $\tau(A) = \beta(A) - \kappa(A) = \kappa(\overline{A}) - \kappa(A)$

Probability-Rank translation $\kappa(A) = \log_b P(A) - \log_b \max_{S \in O} P(S), \ b \in (0, 1)$ $P(A) + P(\bar{A}) = 1$ $\tau(A) = \kappa(\bar{A}) - \kappa(A) = \log_b(1 - P(A)) - \log_b P(A)$ $\tau(A) = \log_{b}(\frac{1 - P(A)}{P(A)})$: [probability to two-sided rank] $P(A) = \frac{1}{h^{\tau(A)} + 1}$: [two-sided rank to probability]

E1:E3 Methods - unknown objective probability

Grade your degrees of **disbelief**:

Fig. 1. Participants assigned numerical values to their degrees of disbelief toward a set of propositions presented in a short questionnaire with unknown objective probabilities. This figure shows participants' disbelief towards temperature ranges for Boston's daytime high temperatures during September. Experiment 2 replicated the findings from Experiment 1's consistent negative ranking values towards propositions, represented from a scale from 0 to ∞ . Participants found the temperature range of 11 to 20°C to be least surprising.

Majority of participants obey the law of negation and can use positive ranking functions to grade degrees of belief

Relationship between subjective probability and two-sided ranks (E3: N = 200)

E4 Methods - learning task: modelling opponent behaviour through probability manipulation

Fig. 5. Participants assigned numerical values to their degrees of disbelief towards each room after playing a hide-and-seek game with opponents having objective probability distributions of 100-0-0, 70-30-0, 80-15-5, and uniform. The inclusion of the p = 0 room condition aimed to elicit maximum surprise. The results reveal a consistent pattern indicating a logarithmic relationship, particularly prominent in the 80-15-5 distribution condition. It is worth noting that while some participants reported a p = 0, a distinct group of participants exhibited differing levels of surprise towards the p = 0 room condition, ranging from minimal surprise (or not surprising) to extreme surprise (or was considered impossible).

References

Spohn, W. (2013). A ranking-theoretic approach to conditionals. *Cognitive Science*, 37(6), 1074-1106. Skovgaard-Olsen, N. (2016). Ranking theory and conditional reasoning. *Cognitive Science*, 40(4), 848-880. Tiede, K. E., Henninger, F., & Kieslich, P. J. (2022). Revisiting the Open Sampling format: Improving risky choices through a novel graphical representation. Psychonomic Bulletin & Review, 1-12. Supported by an NSERC Award to B.A.

Fig. 6. A set of probability vectors forms the probability simplex, Δ^{n-1} , a generalized triangle. The translated ranks were closer to the objective probabilities (**115 correct responses**) compared to subjective probabilities (**61 correct responses**). Subjective probability responses provided by participants were less accurate compared to degrees of disbelief/surprise when mapped onto the simplex, enabling a direct comparison with objective probability. Note that the size of the points represents the frequency of occurrence in the respective x, y, z coordinates.