Plinko: A spatial probability task to measure learning and updating
Alex Filipowicz, Derick Valadao, Britt Anderson, & James Danckert

We tested participants' ability to match changing probabilities using Plinko.

Task begins: Participant draws bars, Ball falls through pegs, Ball lands - Participant can adjust bars

Two groups played against four different distributions of ball drops.

Computer Ball Distributions - 100 Trials each

Break: Participants are given a break between distributions
Continuous: Participants get no break between distributions

Participants can use Plinko to track changes in ball probability...

...and give trial by trial information about likelihood estimations and accuracy.

Acknowledgments:
The authors would like to thank Luis Meira and Anurag Pratik for their assistance with data collection. This research was supported in part by a NSERC Canada Research Chair and Discovery Grant (J.D.) and a CIHR Operating Grant (B.A. and J.D.)

alsfilip@uwaterloo.ca
1. **How do we capture an online measure of participant expectations?** Research has demonstrated that our expectations influence our ability to detect and adapt to changes in our environment\(^1\). However, measuring participant expectations at any given point throughout a task presents a significant challenge. We created a task based on “Plinko” to overcome this difficulty. In this task, participants see a ball fall through pegs and land in slots. Their goal is to predict the likelihood that a ball will fall in any slot on a particular trial. Participants indicate their estimations by drawing bars under each slot using a computer mouse. They are told that taller bars represent a higher likelihood that a ball will fall in a particular slot and shorter bars represent a lower likelihood. These bars are set before participants observe any ball drops and can be adjusted at the start of each trial. The bars represent a participant’s expectations on each trial. By manipulating the location of the ball drops, we can measure how quickly and efficiently participant expectations are updated when faced with changes in ball probability.

2. **Participants played Plinko against different distributions of ball drops.** To test the effectiveness of our task, we exposed participants to four sequences of 100 ball drops (400 trials in total) generated from four distinct probability distributions: 1) a wide Gaussian distribution, 2) a narrow Gaussian distribution, 3) a bimodal distribution, and 4) a positively skewed distribution. Each participant was exposed to the exact same order of ball drops. Participants were assigned to one of two groups. The first group (termed the “break” group) was given a break between each distribution and pressed the space bar when they wanted to continue. The second group (termed the “continuous” group) were exposed to the exact same sequence of ball drops, but were switched from one distribution to the next without any break in the task.

3. **Participants effectively used Plinko to track changes in ball drops.** The heatmaps show the changes in participant probability estimations over the course of the task. Areas of higher saturations (blue or red) represent areas that participants assigned higher probability to specific slots whereas areas of low saturation represent areas of lower probability. These graphs show that participants in both conditions used the bar heights to track changes in ball probability, but that participants in the break group seemed to do so more accurately.

4. **Plinko provides trial by trial information about participant expectations and accuracy.** To measure how accurately participants represent any of the computer’s distributions, we can measure the percentage of overlap between a participant’s estimations on any trial and the actual distribution of compute ball drops. This overlap provides an accuracy score that can then be compared between groups. We can see that participants in the break condition were able to match the computer’s distribution very accurately and did so very quickly in each condition. In contrast, participants in the continuous condition had more difficulty representing each of the computer’s distributions. This difference in performance seems due to a “hangover” effect in the continuous condition, where a participant’s estimates on previously viewed distributions influenced the efficiency with which they detected and adapted to changes in ball probability.

Overall these results demonstrate that our task provides a detailed trial by trial representation of participant expectations, and can be used to measure the efficiency with which participant adapt to environmental changes.