Can task-irrelevant spatial regularities influence

sequence learning?

We are proficient at detecting regularities in our environment - We use these regularities to learn the statistical properties of events - When event properties change, we update our event representation Events can be composed of many redundant features - Task-irrelevant spatial features have been shown to influence behaviour ${ }^{1}$ We predict that task-irrelevant spatial regularities will:

- Influence participants' ability to detect non-spatial event regularities - Improve their ability to detect switches in an environment

Measuring sequence learning using Rock-Paper

 Scissors

Computer has made its
choice $\quad \begin{gathered}\text { Result } \\ \text { Gren=Win; Red=Los }\end{gathered}$

No Regularity

Trials
40 undergraduates played Rock-Paper-Scissors against a computer that repeated sequences of 5 plays. Each sequence was presented either with spatial regularity or no spatial regularity

Participants played 4 blocks of trials. In each block computer played initial sequence, then switched to second sequence once the participant had learned first sequence. Participants played against a block that switched from spatial regularity to spatial regularity $(R-R)$, regularity to no regularity $(R-N)$, no regularity to regularity ($\mathrm{N}-\mathrm{R}$), and no regularity to no regularity ($\mathrm{N}-\mathrm{N}$).

Redundant spatial regularities improve sequence learning
Performance across all blocks

Participants took fewer trials to learn sequences presented with taskirrelevant spatial regularity and experienced higher win rates.

Spatial regularity improves initial sequence learning and

 switch detectionPerformance for sequence position across all blocks

Participants learned initial block sequences and detected switches more rapidly when spatial regularity was present.

Overall performance in each block

Performance was best in blocks that contained at least one sequence with spatial regularity.

Switch performance improves only when spatia regularity is present

Participants learned second block sequence faster than first sequence when second sequence contained spatial regularity.

Task-Irrelevant spatial regularities influence sequence learning and switch detection
Separate behaviours that share neural activation have been found to influence each other if they are done simultaneously ${ }^{2}$.
Posterior parietal cortex has been implicated in sequence learning ${ }^{3}$ and spatial attention ${ }^{4}$. Redundant spatial regularities during a sequence learning task may increase the firing rate of this region thereby facilitating sequence learning.

Redundant spatial regularities may help patients that have difficulty with detecting environmental changes (see poster 23.535-E. Stoettinger).

For fMRI work on learning and switching see poster 36.547-D. Valadao

O :ixtc

