

Trials

40 undergraduates played Rock-Paper-Scissors against a computer that repeated sequences of 5 plays. Each sequence was presented either with spatial regularity or no spatial regularity.

Sa Sequence Participants played 4 blocks of trials. In each block computer played initial sequence, then switched to second sequence once the participant had learned first sequence. Participants played against a block that switched from spatial regularity to spatial regularity (R-R), regularity to no regularity (R-N), no regularity to regularity (N-R), and no regularity to no regularity (N-N).

The Influence of Task-Irrelevant Spatial Regularity on Sequence Learning

of trials

20

Alex Filipowicz¹, Britt Anderson¹², James Danckert¹

¹Department of Psychology, University of Waterloo, ²Centre for Theoretical Neuroscience

0.6

0.2

ate

Redundant spatial regularities improve sequence learning

Result Green=Win; Red=Loss; Grey=Tie

Participants took fewer trials to learn sequences presented with taskirrelevant spatial regularity and experienced higher win rates.

Spatial regularity improves initial sequence learning and switch detection

Performance for sequence position across all blocks

C_ag

Sq8

Regularity

No Regularity

Participants learned initial block sequences and detected switches more rapidly when spatial regularity was present.

Overall performance in each block

Performance was best in blocks that contained at least one sequence with spatial regularity.

Performance across all blocks

Switch performance improves only when spatial regularity is present

Participants learned second block sequence faster than first sequence when second sequence contained spatial regularity.

Task-Irrelevant spatial regularities influence sequence learning and switch detection

Separate behaviours that share neural activation have been found to influence each other if they are done simultaneously².

Posterior parietal cortex has been implicated in sequence learning³ and spatial attention⁴. Redundant spatial regularities during a sequence learning task may increase the firing rate of this region thereby facilitating sequence learning.

Redundant spatial regularities may help patients that have difficulty with detecting environmental changes (see poster 23.535 - E. Stoettinger).

For fMRI work on learning and switching see poster 36.547 - D. Valadao.

References 1. Robertson, E.M. & Pascual-Leone, A. (2001). Aspects of sensory guidance in sequence learning. Experimental Brain Research, 137, 336-345. 2. Fias, W., Lauwereyns, J., & Lammertyn, J. (2001). Irrelevant digits affect feature-based attention depending on the overlap of neural circuits. Cognitive Brain Research, 12(3), 415-423. 3. Toni, I., Krams, M., Turner, R., & Passingham, R. E. (1998). The time course of changes during motor sequence learning: A whole-brain fMRI study. NeuroImage, 8(1), 50-61. 4. Silver, M. A., Ress, D., & Heeger, D. J. (2005). Topographic maps of visual spatial attention in human parietal cortex. Journal of

Neurophysiology, 94(2), 1358-1371.

Acknowledgements

Performance within each block type

The authors would like to thank Diana Lam and Katarzyna Gittsovich for their assistance with data collection. This work was supported in part by a NSERC Canada Research Chair and Discovery Grant (J.D.) and a CIHR Operating Grant (B.A. and J.D.). NSERC CRSNG

http://thedaag.uwaterloo.ca/