

Putting Psychology Studies Online
Using jsPsych, JavaScript and PHP

Isabella Sewell

Department of Psychology, University of Waterloo

Britt Lab Group

March 1, 2021

jsPsych, JavaScript and PHP ___ 3

Naming Files for the BrittLab Server ___ 3

Information and Consent Letter __ 4

Task __ 5

Skeleton __ 5

Page Layout ___ 6

Script __ 7
SONA __ 7
Detect Browser __ 8
Collecting and Saving Demographic Information __ 8

Instructions and Text Screens __ 10

Trials __ 10
Fixation ___ 10
Break Screen ___ 11
Trials with Fixation and Implementing the Break Screen __ 11

Thank You and Feedback Questions ___ 11
Finished Text ___ 11
Feedback Question as Text __ 12
Feedback Question as Slider __ 12
Thank You ___ 13

Timeline ___ 14

Saving Data __ 14

Local Save __ 16

Feedback Letter __ 17

Working with Terminal – MAC __ 18

How to access the BrittLab server __ 18

Using scp to Transfer Files Between Server and Computer ___ 19
Computer à Terminal ___ 19
Terminal à Computer ___ 19

Creating the Study on SONA __ 20

jsPsych, JavaScript and PHP
The document will include code that utilizes jsPsych, JavaScript and PHP (with some HTML).

jsPsych is a JavaScript library that was built for running psychological experiments online (in a web browser). The library has plugins
that provide the general framework for building a task. jsPsych has very helpful documentation for each of their plugins, the steps
for running a simple experiment and useful youtube tutorials fascilitated by the creators of jsPsych.

Beyond jsPsych, coding directly in JavaScript is useful for creating parts of your task that may be novel or more specific than any of
the plugins available. The primary tool I used for understanding JavaScript was w3schools.com. They had numerous tutorial
chapters, each with specific examples.

Lastly, although you can code a task using jsPsych and JavaScript, in order to have your data save onto the BrittLab server, you must
implement pieces of PHP. PHP is a server scripting language and is also used (like JavaScript) for creating interactive web pages.
W3schools.com also has tutorials for learning PHP syntax. For your purposes, you will be primarily copying and pasting the pieces of
PHP code created my Dr. Anderson and modified by Julia, while also calling upon write_data.php and selectBrittLab.php.

Naming Files for the BrittLab Server

When running studies online, you will need to include the information and consent letter, task and feedback letter. These three files
will be put into your protocols folder on the BrittLab server. The following naming convention is useful to ensure your file names are
concurrent with what is called upon in the sample code.

File What to Name your file Example
Information and Consent Letter protocolname_consent.php globallocal_consent.php
Task protocolname_task.php globallocal_task.php
Feedback Letter protocolname_feedback.php globallocal_feedback.php

Generally, when I was creating my task, I coded each of these as an .html file so that I could test it on my computer’s web browser.
However, some pieces of my code that I attached below are now specific to PHP, so you will run into errors if you try to run it as a
.html file. Therefore I would suggest Julia’s approach in that she utilizes a software (XAMPP) that mimics a server so that she can
troubleshoot .php files directly while also having the data save onto her own computer (not the BrittLab server).

Information and Consent Letter
The template for the information and consent letter was adapted from Bill Eickmeier’s old beehive link on “Psych Web Form
Templates” (https://beehive.uwaterloo.ca/dept/webformtemplate/). The consent checkbox links this file to the task file.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=ISO-8859-1">
<title>Information and Consent Form</title>
</head>
<BODY bgcolor="#ffffff">
 <form action=<?= "https://artsresearch.uwaterloo.ca/~brittlab/protocols/" . $_POST['protocol'] . "/" . $_POST['protocol'] .

"_task.php"?> method="POST">
 <input type="hidden" id="sonaid" name="sonaid" value=<?php echo $_POST['sonaid']?> >
 <input type="hidden" id="protocol" name="protocol" value=<?php echo $_POST['protocol']?> >
 <input type="hidden" id="pwsecret" name="pwsecret" value=<?php echo $_POST['pwsecret']?> >
 <input type="hidden" id="frompage" name="frompage" value="globallocal_consent.php"

Here I wrote out my information and consent form using HTML syntax.

<lable>I agree to take part in this study
<input type="checkbox" name="consent" value="Accept">

<lable>I do not agree to take part in this study
<input type="checkbox" name="dont_consent" value="NotAccept">

<input type = "submit">
</form>
</body>
</html>

Task
Skeleton
Again, the general skeleton for the task was from Beehive’s Psych Web Form Templates. In the head section, ensure you have all of
the appropriate jsPsych plugins that were used throughout the task. Also, ensure that the path to the plugin is the server’s path, not
the one for your personal computer. Julia has adapted a couple of plugins (notably, jspsych-julia-html-form.js which I used for all of
my instruction screens).

An error I made when creating this section was having inconsistencies between jspsych and jsPsych. Some systems are case-sensitive
when running the code. When refering to the path to the plugin use jsPsych-6.2.0. However, when refering to the plugin name itself
use jspsych.

The title in the head refers to what participants will see in their tab.

<!DOCTYPE html>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=ISO-8859-1">
 <title>Mental Model Updating</title>
 <script src="/~brittlab/protocols/jsPsych-6.2.0/jspsych.js"></script>
 <script src="/~brittlab/protocols/jsPsych-6.2.0/plugins/jspsych-julia-html-keyboard- canvas.js"></script>
 <script src="/~brittlab/protocols/jsPsych-6.2.0/plugins/jspsych-html-keyboard-response.js"></script>
 <script src="/~brittlab/protocols/jsPsych-6.2.0/plugins/jspsych-julia-html-form.js"></script>
 <script src="/~brittlab/protocols/jsPsych-6.2.0/plugins/jspsych-survey-text.js"></script>
 <script src="/~brittlab/protocols/jsPsych-6.2.0/plugins/jspsych-survey-multi-choice.js"></script>
 <script src="/~brittlab/protocols/jsPsych-6.2.0/plugins/jspsych-html-slider-response.js"></script>
 <link rel="stylesheet" href="/~brittlab/protocols/jsPsych-6.2.0/css/jspsych.css">

 <style>
 </style>
 </head>

This part in the body is in order to carry information over from SONA and the information and consent letter

 <body>
 <input type="hidden" id="sonaid" value=<?= $_POST['sonaid']?> >
 <input type="hidden" id="protocol" value=<?= $_POST['protocol']?> >
 <input type="hidden" id="secret" value=<?= $_POST['pwsecret']?> >
 <input type="hidden" id="consent" value=<?= $_POST['consent']?> >
 </body>
 <script>
 </script>
 </html>

Page Layout
If you would like to make the background black with white writing, here is a couple pieces of code to use. The font (body) colour is
modified in the style section, while background colour is modified in the script section. By default, the task would have a white
background with black writing.

 <style>
 body {
 color: white;
 }
 </style>

 <script>
 document.body.style.backgroundColor = "black";
 </script>

Script
The rest of the code for the task would be put in the script section of the .php file

SONA
Below is code that gathers data from the information and consent form.

 var jssonaid = document.getElementById("sonaid");
 var jsprotocol = document.getElementById("protocol");
 var jssecret = document.getElementById("secret");
 var jsconsent = document.getElementById("consent");

The following if statement ensures that if a participant did not click “I agree to take part in this study” in the consent form, the study
would be aborted and they would be redirected back to the SONA home page.

 if (jsconsent.value !== "Accept") {

 alert("Study Aborted for Lack of Consent");
 var numTrialsOverall = 0;
 window.location.href = "https://uwaterloo.sona-systems.com/";

 };

The following piece of code is in order to save the participants data from SONA and the information and consent letter.
jsPsych.data.addProperties ensures that this piece of data appears on every trial (row in a .csv file) and as it’s own separate column.
This was important in order to ensure the participant’s SONA ID is associated with each trial so that when you combine multiple
datasets, you can still know which trial belongs to which participant. You can also do this for demographic questions (see next page).

 // add participant data to all rows
 jsPsych.data.addProperties({
 protocol: jsprotocol.value,
 consent: jsconsent.value,
 subject: jssonaid.value,
 });

Detect Browser
This is a short piece of code that I implemented to ensure that participants were only using Google Chrome as a browser (it was the
only browser compatible for my study). The problem was that the code could run on Safari, but the data wouldn’t save, so I would
suggest checking other browsers for compatibility before running participants. I adopted the code from MDN Web Docs Browser
detection using the user agent.

 var detectBrowser = navigator.userAgent;

 if (detectBrowser.indexOf('Chrome') != -1)
 {
 }
 else
 {
 alert("Study Aborted Due to Not Using Chrome")
 window.location.href = "https://uwaterloo.sona-systems.com/";
 }

Collecting and Saving Demographic Information
For demographic information, again I would suggest implementing jsPsych.data.addProperties in order to save variables as a
separate column for each trial (all rows will be filled). By default, the jsPsych plugins used for demographic or feedback questions
will only save the variables as a string (column B).

The difference now for jsPsych.data.addProperties (compared to for protocol, consent and subject) is that it is now specific for each
variable. Therefore, you must write “on_finish: function(data){jsPsych.data.addProperties… etc.}” (see next page).

Survey Text
I used the jspsych-survey-text plugin for demographics like age where participants type out the answer. Jspsych-survey-text also
allows for the question to be required, so that participants need to answer the question. If they try to skip it, they would be shown
the alert “please fill out this field”. Lastly, both survey-text and survey-multi-choice (see below) allow for multiple questions on a
single page.

 var age = {
 type: 'survey-text',
 preamble: '<p> Please enter your age in years </p>',
 questions: [
 {prompt: " ", name: 'Age', required: true}
],
 on_finish: function(data) {
 jsPsych.data.addProperties({
 age: JSON.parse(data.responses).Age,
 })
 }
 };

Multiple Choice
The jspsych-survey-multi-choice plugin also has a “required” parameter where if a participant tries to skip the question, they would
be shown an alert that says “Please select one of these options”. Something useful for this plugin, is that it is easy to do multiple
pages with different scales or even multiple questions on a page with different scales. This can be done by adding multiple prompts
and specifing which option variable it should follow. The jsPsych page for this plugin shows a great example of this.

 var page_sex_options = ["Male", "Female", "Prefer not to say"];

 var sex = {
 type: 'survey-multi-choice',
 questions: [

 {prompt: "What is your sex?", name: 'Sex', options: page_sex_options, required:true},
],
 on_finish: function(data) {
 jsPsych.data.addProperties({
 sex: JSON.parse(data.responses).Sex,
 })
 }
 };

Instructions and Text Screens
I used Julia’s plugin jspsych-julia-html-form.js for almost all of my instruction pages. It shows text and a next button.

 var start = {
 type: "julia-html-form",
 stimulus: "Press the next button to start the experiment!",
 };

Trials
Fixation
For the fixation screen, I had a grey cross in the centre that was set to disappear automatically (i.e., jsPsych.NO_KEYS). I also set it so
that the fixation screen appeared for varying durations (750 ms, 1000 ms, 1250 ms or 1500 ms). This was modelled from jsPsych’s
page on Using Functions to Generate Parameters

 var fixation = {
 type: 'html-keyboard-response',
 stimulus: '<div style="font-size:60px; color:grey;">+</div>',
 choices: jsPsych.NO_KEYS,
 trial_duration: function(){
 return jsPsych.randomization.sampleWithoutReplacement([750,1000,1250,1500], 1)[0];
 }
 };

Break Screen
I also implemented a break screen where participants simply had to press a key to continue.

 var break_screen = {
 type: 'html-keyboard-response',
 stimulus: "This is a break. Press any key to continue"
 };

Trials with Fixation and Implementing the Break Screen
I didn’t include the lines of code for my task, but if you want to see the steps I implemented please refer to globallocal_task.php in
the protocols folder globallocal. The pieces of code combined my allTrials variable and the fixation variable. Julia helped set this up
so that fixation screens followed each trial (i.e., allTrials_withFixation). We also implemented a break screen to occur when the
current trial (i.e., curTrialIndex) was divisible by 250 (i.e., on the 250 trial), but not when the current trial number was 0.

 allTrials_withFixation = []
 for (curTrialIndex = 0; curTrialIndex < allTrials.length; curTrialIndex++) {
 allTrials_withFixation.push(fixation)
 allTrials_withFixation.push(allTrials[curTrialIndex])
 if (curTrialIndex % 250 == 0 && curTrialIndex != 0) {
 allTrials_withFixation.push(break_screen)
 }
 }

Thank You and Feedback Questions
Finished Text
 var finished = {
 type: "julia-html-form",
 stimulus: "<p>You've finished the experiment!</p>
" +
 "<p>Please press the next button to complete some feedback questions.</p>",
 };

Feedback Question as Text
Here, I used the same survey-text plugin as I did for the age demographic question, but the difference is I made the text box bigger
(i.e., rows:5). This way participants can read there entire answer without it being cut-off as they type.

 var feedback_text = {
 type: 'survey-text',
 questions: [
 {prompt: "Did you notice any regularities or patterns in the study?", name: 'Initial

Observations',rows: 5, required: true},
],
 TrialType: "Survey",
 };

Feedback Question as Slider
The jspsych-html-slider-response plugin is a useful tool for replacing a Likert scale if you want participants to be more specific.
Afterwards, I manually converted the numbers from 0-100 into Likert-like labels so that I could visualize it better. Similar to other
plugins that had “required:true”, html-slider-response utilizes “require_movement:true”. This way, participants need to move the
scale or at least click on the slider in order to go to the next question.

 var feedback_instructions = {
 type: "julia-html-form",
 stimulus: "<p>For the following questions,

please move the slider to indicate how much you agree with each

statement</p>",
 };

 var feedback_slider = {
 type: 'html-slider-response',
 stimulus: '<p> "up" and "down" triangles were equally likely to occur</p>',
 labels: ['Agree', 'Disagree'],
 require_movement: true,
 slider_width: 400,

 TrialType: "Survey",
 on_finish: function(data) {
 if(data.response <= 20){
 var scale = "agree";
 };
 if(data.response >20 && data.response < 40){
 var scale = "somewhat agree";
 };
 if(data.response >=40 && data.response < 60){
 var scale = "neutral";
 };
 if(data.response >=60 && data.response <= 80){
 var scale = "somewhat disagree";
 };
 if(data.response > 80){
 var scale = "disagree";
 };
 data.scale = scale
 },
 };

Thank You
 var thank_you = {
 type: "julia-html-form",
 stimulus: "<p>Thank you very much for participating!</p>
" +
 "<p> Press the next button to read the feedback letter</p>",
 };

Timeline
This is an example of what my timeline would look like if I included all of the variables aforementioned.

 timeline = [].concat(
 age,
 sex,
 start,
 allTrials_withFixation,
 finished,
 feedback_text,
 feedback_instructions,
 feedback_slider,
 up_down_equal,
 thank_you,
)

Saving Data
I used a different saveData function for my code, but Julia has now created a new function to resolve an error I was running into.
Before, data for my experiment would not save if the overall trial number exceeded 300 trials. Julia described it as the data was still
saving when the participant proceeded to the feedback letter, so the data couldn’t save properly. I resolved the problem by filtering
jsPsych.data.get() to include only trials (not fixation screens) in the .csv file. The following piece of code is Julia’s version which
should resolve this issue (this can be found in the protocols folder sampleprotocol as sampleprotocol_task.php).

 function saveData (protocol, name, data) {
 return new Promise((resolve,reject) => {
 var xhr = new XMLHttpRequest();
 xhr.onreadystatechange = function() {
 if (this.readyState == 4 && this.status == 200) {
 resolve('file successfully saved')
 }
 };

 xhr.open('POST', "../write_data.php");
 xhr.setRequestHeader('Content-Type', 'application/json');
 xhr.send(JSON.stringify({protocol: protocol, filename: name, filedata: data}));
 })
 }

Lastly, these lines of code call the saveData function. Again, Julia has fixed the error that I ran into when saving data, so this looks a
little different from my original code. Here, I’ve called the saveData function twice so that data saves either when the participant
finishes (i.e., on_finish) or when they close the tab or window (i.e., on_close).

 jsPsych.init({
 timeline: timeline,
 on_finish: function() {
 saveData(jsprotocol, jssonaid + "_" + jsprotocol, jsPsych.data.get().csv())
 .then((x) => {
 console.log(x)
 let windowloc = jsprotocol + "_feedback.php?sonaid=" + jssonaid
 window.location.href = windowloc
 on_close: function() {
 saveData(jsprotocol, jssonaid + "_" + jsprotocol, jsPsych.data.get().csv())
 .then((x) => {
 console.log(x)
 let windowloc = jsprotocol + "_feedback.php?sonaid=" + jssonaid
 window.location.href = windowloc
 })
 }
 });

Local Save
If you are looking to troubleshoot your task as an .html file, I would suggest utilizing jsPsych.data.get().localSave(‘csv’,
idvariable.concat(‘_protocolname.csv’)). This will save the data to your personal computer. If you’re running it as an .html file, you
won’t have access to jssonaid.value (from SONA). So you can create a variable subject_id at the beginning of the task. Again, this is
just for troubleshooting your task, not for running actual participants.

I mentioned this at the beginning of the document, but instead of testing it as a .html file, Julia uses a software (XAMPP) that mimics
a server so that she can troubleshoot .php files directly while also having the data save onto her own computer (not the BrittLab
server). This way, Julia can utilize the saveData function (mentioned earlier), rather than localSave (shown below).

 var subject_id = jsPsych.randomization.randomID(10);

 jsPsych.init(
 {
 timeline: timeline ,
 on_finish: function() {
 jsPsych.data.get().localSave('csv', subject_id.concat('_globallocal.csv'))
 },
 on_close: function() {
 jsPsych.data.get().localSave('csv', subject_id.concat('_globallocal.csv'))
 }
 },
);

Feedback Letter
This is modelled similarly to the information and consent letter.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=ISO-8859-1">
<title>Feedback Form</title>
</head>
<BODY bgcolor="#ffffff">
 <form action="https://uwaterloo.sona-
systems.com/webstudy_credit.aspx?experiment_id=5060&credit_token=e4847f42ee0e4bbab390b38c76ce41bd&survey_code=" +
<?= $_GET['sonaid']?>; method="POST" >
 <input type="hidden" id="feedback" name="feedback" value=<?php echo $_POST['feedback']?> >

Here, I wrote out my feedback text using HTML syntax.

<a href='https://uwaterloo.sona-
systems.com/webstudy_credit.aspx?experiment_id=5060&credit_token=e4847f42ee0e4bbab390b38c76ce41bd&survey_code=<?=
$_GET['sonaid']?>' >Return to Sona for Credit

</form>
</body>
</html>

Working with Terminal – MAC
How to access the BrittLab server
1. Open Terminal via the applications’ utilities folder or doing a Spotlight Search via command space and typing in Terminal.

2. Connect to the University of Waterloo VPN via Cisco AnyConnect Secure Mobile Client. If you’ve never connected before,

connect to cn-vpn-uwaterloo.ca
- Username is your WATIAM username
- Password is your WATIAM password
- Second password is via Duo Mobile (at least for me), where you open the app and under University of Waterloo is shows a 6-

digit password.

3. Once you’ve connected to the VPN, in your terminal type in the following:

ssh brittlab@artsresearch.uwaterloo.ca
ls

o If you want to see the contents of where you’re located in the server
cd public_html/protocols
ls

o Here is where all of the protocols live
o selectBrittLab.php and write_data.php will be used in all of the protocols (ensures participants are redirected to your

specific study and that the data saves onto the server, respectively)
cd *protocolname*

o Each protocols folder should have:
§ Data (folder)
§ Img (if necessary)
§ protocolname_task.php
§ protocolname_consent.php
§ protocolname_feedback.php

Using scp to Transfer Files Between Server and Computer
Ensure that this is occuring in a new terminal window separate where you did ssh brittlab@artsresearch.uwaterloo.ca

Computer à Terminal
E.g., uploading your study onto the server.

Refer to the following naming convention.

scp *space* file path/file name *space* brittlab@129.97.222.16:/home/brittlab/public_html/protocols/*your
protocols folder*/*file name*

Here is an example of a scp of my task that is copied from my desktop and pasting onto my globallocal protocols folder.

scp /Users/Bella/desktop/globallocal_task.php
brittlab@129.97.222.16:/home/brittlab/public_html/protocols/globallocal/globallocal_task.php

Terminal à Computer
E.g., downloading a participant’s dataset onto your computer

The difference here is now you are copying from the server and pasting onto your computer. So, the naming convention is reversed.

scp brittlab@129.97.222.16:/home/brittlab/public_html/protocols/globallocal/data/348898_globallocal.csv
/Users/bella/desktop/348898_globallocal.csv

Creating the Study on SONA
When creating a new study or changing study information on SONA, copy and paste the following under study URL:

https://artsresearch.uwaterloo.ca/~brittlab/protocols/selectBrittLab.php?id=%SURVEY_CODE%

Ensure that you add ?id=%SURVEY_CODE%. %SURVEY_CODE% will be replaced by the participant’s SONA ID.

Also, when clicking on “Detailed Help” (under My Studies à Study Information), it explains that adding?id=%SURVEY_CODE% also
ensures that participants get granted the credit automatically after they complete the study.

When I created the study, I also make sure to write this under Preparation.

<big><big>IMPORTANT: Please complete the study in Google Chrome and use password
globallocal</big><big></big></big>

When participants follow the study URL, they will be redirected to the BrittLab artsresearch home page. Their SONA ID will be
automatically filled in, but they will need a password (which is the name of your protocols folder on the BrittLab server). This piece
of HTML syntax makes it more salient to participants that they need a password to access the study. It’s also a useful place to
mention if they need to use a specific browser

